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SURVEY

Several major programs of calculation have been finished up during the
period covered by this Report. Mr. Freeman, in the first place, has completed his

calculation on the electronic energy of the OH molecule, and has fulfilled all the
requirements for the doctor's degree. He leaves the group at the end of June. His
calculations represent one of the few really complete treatments of a molecular wave

function by configuration interaction; they are particularly valuable because he has
carried through the work both using atomic orbitals, with complete treatment of the
orthogonality problem, and using molecular orbitals. It is particularly interesting

to compare his results on OH with the similar calculations of Scherr on N., of Sahni

on BH, and of Karo and Olson on LiH; these represent most of the calculations of

comparable rigor which have been carried through up to now. The striking result, a
somewhat disconcerting one, is that the calculated binding energy forms a very differ-
ent fraction of the experimental value for these various cases. One cannot, then,

simply apply a fixed correction factor to the calculated values to get a correct value.

Scherr and Freeman have both found quite small fractions of the experimental value,
whereas Sahni and Karo and Olson have found a large fraction of the experimental

value.

The conclusion which we must draw from this, I believe, is that further and
much more extensive configuration interaction must be used, before one can get cal-

culated results that can be trusted. It is well known that though the total energy of
the separated atoms, or of the molecule, can be calculated with an error of only about

half a percent by the methods we are now using, nevertheless this residual error in

absolute magnitude is several times as large as the binding energy which we are seek-
ing. We should have to get the total energy with an error of roughly a tenth as great

as at present, before we could begin to trust the binding energy very seriously. The

work which Nesbet and Watson have been doing on configuration interaction in helium,
the work which I have been doing on that same problem (mentioned in the preceding

Quarterly Progress Report), and similar work which Shull and L~wdin have been doing,
all suggest that with a relatively simple configuration interaction one can decrease the
error of the calculation of the helium atom to about ten percent of the error in the

Hartree-Fock energy. A similar improvement is required to make the molecular
calculations at all reliable, and we must look forward to similar configuration inter-

actions there, as a goal to be attained as rapidly as possible.
The other two calculations which have been virtually completed are on energy
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bands: Corbato's work on graphite, and Howland's on KCl. These have both been

carried through by the tight binding method, including detailed calculation of the re-

quired many-center integrals, and both serve to mark a new advance in the use of the

tight-binding method. Corbat6, in his work on the o as well as the r-bands in graph-

ite, gives us a reliable estimate of the actual shape of the occupied energy bands for
this important material. His results could be appreciably in error -- he has used an

assumed periodic potential, without carrying through a self-consistent field calcula-

tion, and has merely found the one-electron energy in this periodic potential. Never-
theless his results are so reasonable that it seems likely that more accurate calcula-

tions, when they become possible, will merely verify the general correctness of his

results.

Howland presents in this Progress Report a discussion of the lattice energy

of KCl, but his calculations include much additional material, as well, including the

details of the energy bands. These calculations represent a higher degree of sophisti-

cation than Corbato s, in that Howland has set up a determinantal wave function, and

computed its energy, including all the various integrals. His values of lattice energy,
which can be compared with L6wdin's earlier work, show that L6wdin omitted certain

interactions which are of significant size. These calculations provide one of the most

accurate results which have been obtained for the energy of a crystal lattice.

The reason why Howland was able to get more complete results than Corbat6
is based essentially on the difference between the two types of crystals. Graphite of

course is a covalently bonded crystal, which means that the valence electrons of
neighboring atoms have a very large overlap with each other. Potassium chloride,

on the contrary, being an ionic crystal, has wave functions for the outer electrons

which overlap only slightly, their overlap taking care of the repulsion between closed

shells. It is this much smaller magnitude of the overlap in KC1 which makes it in-

herently a simpler problem for the application of the tight-binding method, and which

makes possible a higher degree of approximation than in graphite. A calculation of

the order of difficulty which Corbat6 has carried through in graphite is a very major

effort, which as far as we know has never been even approached in previous studies

of covalently bonded crystals by the tight-binding method. Corbat6 considers that
this method would prove to have very n~arly insuperable difficulties for a crystal

much more complicated than graphite; in this case he was greatly helped by the two-

dimensional nature of the crystal, an almost unique property of graphite.

In addition to these calculations which have reached virtual completion,

Schultz's considerations regarding the polaron have advanced a great deal in recent

months, and he is bringing this work to a conclusion, hoping to finish it during the

summer. The other work of the group is progressing well, and several other pieces

of work should be brought to a conclusion before many more months.

J. C. Slater
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1. MAGNETIC HYPERFINE STRUCTURE OF LITHIUM

A series of calculations have been carried out on the 2 S ground state of lithium

by methods described earlier. (') This is an attempt to obtain the mean value of the

operator

3 6(ri)
f r 2  

-zi
i

The experimental value determined from the magnetic dipole hyperfine structure is

<f> =2. 90 a0
3

Configuration interaction calculations have been made using 2S codetors

(linear combinations of determinantal functions) constructed from analytic orbitals

orthogonal to approximate self-consistent orbitals. Coefficients in the expansion of

a set of orthonormal orbitals which includes the occupied self-consistent orbitals, con-

structed from a set of basic analytic orbitals, have been obtained by the Roothaan pro-

cedure, W under equivalence restriction. This means that the matrix equations of the

Roothaan procedure are solved only for orbitals of positive spin; orbitals of negative

spin are constrained to have spatial factors identical with the orbitals of positive spin.

This introduces no approximation in a configuration interaction calculation so long as

all configurations which can be constructed from the given set of basic orbitals are

either included explicitly or are shown to have a negligible effect on the value of the

quantity being calculated.

A preliminary calculation was made with five s-orbitals, three p-orbitals, and

two d-orbitals. The calculated Hartree-Fock energy Ho0 was - 7. 43241 a. u. and the-3
mean value of the hyperfine coupling operator f was 2. 10759 a for a single determinant

(Hartree-Fock approximation) and 2. 66019 a- after a configuration interaction calcula-
0

tion carried out by second order perturbation methods. The contribution of configura-

tions including p- and d-orbitals to the final value of <f > was negligible. It was found

that configurations which were most important in depressing the energy had little effect

on < f > and vice versa. Since all coefficients of configurations affecting <f > were

extremely small it does not seem likely that significant errors can be attributed to

use of the perturbation method.

A series of calculations were done with six s-orbitals and no orbitals of

higher angular momentum, with results as follows:

Calculation Single determinant Configuration interaction

H00 <f> <f>

2. -7. 43250 a. u. 2. 05565 a- 2. 66706 a-3

0 0
3. -7.43242 Z. 06220 2. 61702

4. -7.43259 2. 11881 2.67834.
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(MAGNETIC HYPERFINE STRUCTURE OF LITHIUM)

Although configuration interaction gives a marked improvement over the

Hartree-Fock calculation of <f> the results appear to indicate a value of about
-3

2.68 a- for this quantity which is insensitive to changes in the number of basic or-
0

bitals, for a wide range of values of the exponent of the sixth basic s-orbital. The

first five orbitals were the same for all calculations. So far it has not been possible

to account for the discrepancy between this result and the experimental value, <f>
-3

2. 90 a-

References

1. R. K. Nesbet, Quarterly Progress Report, Solid-State and Molecular Theory Group,
M.I.T., July 15, 1955, p. 27.

2. R. K. Nesbet, Quarterly Progress Report, Solid-State and Molecular Theory Group,
M,I.T., October 15, 1955, p. 4.

R. K. Nesbet
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2. ATOMIC WAVE FUNCTIONS

The most recent calculation for He has given a result of -2. 9010 a. u. This

involves an SCF calculation with 4s like, 3p like, 2d like and If like basis orbitals, (I)

followed by diagonalizing the 20 X 20 configuration interaction matrix.

Whirlwind has been used in two calculations on Fe. Nesbet's ( ) programs

have again been used, once on a 3d 64s 2 configuration and once on a 3d 74s I configura-

tion. The principal problem has been that of establishing the rules for choosing the

basis functions. To this purpose, several calculations were done on closed shell

transition elements for which there are Hartree-Fock results. Good agreement with

the H-F results was the principal criterion for the basis orbitals. A good choice of

basis orbitals is very important, since the size of the computer limits the number

which may be used. For example, we are using three basis functions for the Fe 3d

orbitals. It appears that the best choice of basis functions in the closed shell case

does not exactly interpolate to a best choice for the unfilled shell case and we are

still in the process of forming the rules for these choices.

Reference

I. R. K. Nesbet, Quarterly Progress Report, Solid-State and Molecular Theory Group,
M.I.T., April 15, 1955, p. 38.

R. E. Watson
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3. THE LITHIUM HYDRIDE MOLECULE

Calculations of the electronic energy for the ground state of lithium hydride

by the self-consistent molecular orbital method are in progress. The electronic con-

figuration of this state is represented as (I-) 2 (21-)2 - . The binding energy has been

obtained for five internuclear distances, and the results are given in Table 3-1.

Table 3-1

Internuclear distance (atomic units)

2.0 2.6 3.0 3.5 4.0

SCF-MO Method: +1. 1413 -0.8702 -1. 1989 -1. 1464 -0.8371

Case 1: +1. 1019 -0. 9310 -1. 2794 -1. 2912 -1. 1072

A: +0.0394 +0. 0608 +0. 0805 +0. 1448 +0.2701

The molecular orbitals are found as a linear combination of the four atomic

orbitals which we are using. An inspection of the coefficients of the atomic orbitals

forming the molecular orbitals for internuclear distances near the equilibrium value

indicates that the IT corresponds to a nearly pure lithium Is orbital, and that the 2 0r

corresponds on the whole to a combination of the lithium Zs and hydrogen Is orbitals,

with a lesser mixing of the lithium Zp function. Therefore, it appears that an approxi-

mate comparison can be made with prior work (case I of the previous Progress Report)

in which we excluded Zp orbitals in the configuration interaction problem. In Table

we have given these results again and also the difference in the binding energy cal-

culated by the two methods.

We may note that the single configuration molecular orbital treatment is be-

coming worse as the internuclear distance increases. Although we have only made a

very preliminary analysis of the effects of configuration interaction, we should expect

that the final result for the binding energy will be about that obtained for case 2 of

the preceding Progress Report, and perhaps somewhat better since we have the addi-

tional mixing in of the Is lithium function. Our previous work, however, has indicated

that the inclusion of the Is lithium electrons will be comparatively unimportant.

The four molecular orbitals which are constructed in the process of making

the calculation are of r symmetry (zero component of orbital angular momentum about

the internuclear axis), since we have not as yet introduced the Zp(m = + 1) or the

Zp(m = - 1) atomic orbitals into the calculation. It now seems that it would be of suffi-

cient interest to include these 2p functions in both of the schemes which we are using.

In the L~wdin formalism this would include an additional configuration to the six pre-

viously used and discussed as case 2. (I) The Roothaan method goes through straight-

-6-
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(THE LITHIUM HYDRIDE MOLECULE)

forwardly with the proper listing of the additional integrals in the Whirlwind programs.

The radial part of the integrations have already been performed so that only the angu-

lar factors need to be computed.

Computation of the integrals for the lithium hydride molecule at an internu-

clear distance of eight atomic units is very nearly completed. We have found that the

convergence of hybrid and exchange integrals is slow, but still satisfactory even at

this distance. The binding energy will be computed for this distance using the con-

ventional configuration interaction scheme as well as the self-consistent molecular

orbital procedure. Comparison of these results should prove interesting because of

the failure of the ground state configuration molecular orbital treatment at larger

internuclear distances.

Reference

I. A. M. Karo and A. R. Olson, Quarterly Progress Report, Solid-State and
Molecular Theory Group, M. I. T. , April 15, 1956, p. 17.

A. M. Karo and A. R. Olson
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4. ELECTRONIC ENERGY OF THE OH MOLECULE

This is the final report under this title. The calculations described only

briefly in previous reports have been completed and submitted as a thesis to the

Physics Department. In conclusion, some of the more pertinent details omitted in

previous contributions to these reports along with some of the results of the configura-

tion interaction (CI) studies are presented here.

CI Calculation Using Non-Orthogonal AO's

Under this heading, we have described in previous reports, a CI study which

used as basis those orbitals natural to the isolated atoms or AO's. The non-orthogonality

of these AO's and of the various configurations formed from them was treated without

approximation by the method of L6wdin. The necessary integrals involving the AO's

were calculated using methods described previously. Table 4-1 lists the AO configura-

tions of 2 r symmetry enumerated in a previous Report. (I) In this table s is the oxygen

Is function, S the oxygen 2s function, and p O P+1 p_ denote the three 2p orbitals in

oxygen with components of angular momentum equal to respectively 0, +1, and -1.

h denotes the hydrogen Is state which is not made orthogonal to the oxygen orbitals.

Table 4-1

Enumeration of the AO configurations

State Coefficient s S h Po P+ P-

l I +_+- +- +- +

Iz I +- +- +- +- +

13 1 +- +- +- +- +

14 I/'/T +- +- + - + +

I/ T +- +- - + +

is a,/- +- +- + + +- -

+- +- + - +- +

+- +- + +- +

6 II.,/T +- + +- - +- +

+- - +- + +- +

17 z+ + + +- + +- -

4 + + +- - 4- +

+- - +- + +- +

+lv +- + +- + +

+- - + +- +- +
€ 2/l '- +- + + 4.- +.- -

_. -_ + - +_ +- +

6+- - + +- +- +

46 +- +- +- +- +

-8-



(ELECTRONIC ENERGY OF THE OH MOLECULE)

(+) and (-) denote the ordinary spin functions. Each row represents a single Slater

determinant, a state being taken as a sum of rows with coefficients (given to the left

of each row) which make these states eigenfunctions of the total spin operator.

In Table 4-2, the expansion coefficients, CK, and the lowest root of the

secular equation giving the binding energy, EB, are listed both for the five configura-

tions formed by keeping the Is and 2s oxygen orbitals doubly filled, and for the more

complete ten configuration treatment which results when the 2s electrons are excited.

From Table 4-2 we observe that the three most important states are 3' 4 and

only 3 corresponds to a polar state OH

None of the configurations have a diagonal energy lower than the total energy,

E, of the separated atoms; in particular, this is also true for the configurations 14

and 8 which correspond to valence bond states (since they describe bonds between

the p and h and the S and h orbitals, respectively). A linear combination of these

states, forming an s-p 0 hybridized bond with the h function, still fails to give binding

even though the coefficients are determined by a variational procedure. This is to be

expected since the atoms in this hydride are fairly close together, and so are in that

region in which the familiar Heitler-London approximation is least valid. Hence a

description in terms of rigid AO's such as the ones employed here should be a poor

approximation.

EB = -. 0627 Rydbergs for the 5 X 5 matrix of interaction: the remaining

five states succeed in lowering it to E B = -. 0764 Rydbergs. Since the observed value

is -. 337 Rydbergs (including the zero-point energy of . 017 Rydbergs) the ten configura-

tions gives only 22 percent of the experimental value. (More will be said later about

this result, when the MO scheme has been presented. ) The total energy is of course

in better percentage agreement with experiment yielding 99. 5 percent of the measured

value. The lowering of the energy, brought about by those states formed by exciting

the 2s electrons, is very small -- hardly justifying the amount of computational

effort that was involved.

Table 4-2

Values of the expansion coefficients

States J, through 5 States 11 through 10

EB = - . 0627 (Ryd.) EB = - . 0764 (Ryd.)

c I  .011209 c I = .014767 c 6 = -.005303

c= = 016577 c2 = .017306 c7 = -. 010048

c3 = .471287 c 3 =.414435 c8 -. IZ2 7 71

c4  .626745 c4 = .607075 c9 -. 02605

c5 = .036 056  c5 = .035611 cO -. 02723

-9- j V



(ELECTRONIC ENERGY OF THE OH MOLECULE)

Since this calculation is the first of its kind, comparison can be made only

with the results obtained by other theoretical methods. In particular, since we have

worked out the same problem by the MO-LCAO method, we have in essence built in

our own check on the results just described.

CI Study Using MO LCAO's

In this scheme another configuration interaction calculation is carried out

using as basis a set of orthonormal MO's which are determined from the same fixed

set of AO's used in the last section. These MO's are determined by Roothaan's,

SCF procedure for finding the "best" set of MO LCAO's which minimize the energy

of a single configuration at each value of the internuclear separation. In this sense

the MO's are not of the rigid form employed in the AO scheme. These SCF MO's

will then be used as basis functions for a configuration interaction calculation of the

molecular ground state. In contradistinction to the work presented in the previous

section no elaborate formalism for handling the matrix elements is needed. The MO's

form an orthonormal set and so none of the orthogonality difficulties encountered

there appear in this study.

Determination of the "Best" Single Configuration MO's

The LCAO approximation constructs symmetry orbitals from a set of atomic

functions. If we call the AO's (0j, then the MO's, 4yi are chosen in the form

i =  Cij 41j (4-1)

J

The Ci are expansion coefficients, undetermined as yet. To satisfy the Pauli prin-

ciple, we shall approximate the molecular state function by a single Slater determinant,

J made up from the tpi as MO's. We want to determine that set of MO's which will

give the lowest possible energy for o subject to the restriction that the 4i's form an

orthonormal set. These "best" MO's are determined by the Roothaan method which

uses the variational procedure in a self-consistent way to select the coefficients, Cij.

which make Jo stationary. Since Meckler and Nesbet have discussed their programs

for Whirlwind for carrying out these computations in other issues of these Reports,

we shall give no further details here.

For OH, from the six avpilable atomic functions only the following twelve+ -

SCF LCAO MO's can be formed: Io, 2r, 3, 4o-, ir , w of plus spin and T, Zo, -w,

i - , i-, of minus spin. These symmetry MO's, as indicated by the notation, be-

long to irreducible representations of the group C v, the symmetry group of the

molecule; the orbitals are labeled in the order of increasing energy. Since the OH

molecule has an odd number of electrons in a non-closed shell ground state, the MO's

-10-



(ELECTRONIC ENERGY OF THE OH MOLECULE)

of different spin cannot be identical, and so must have different LCAO coefficients.

This is due to the difference in exchange energy between those electrons having the

same spin as the odd electron and those of opposite spin. The true solution of the

H-F equations would therefore result in different sets of integro-differential equa-

tions for symmetry orbitals of opposite spin. Furthermore, the standard eigenvalue

form of the H-F equations could no longer be retained. For these reasons we chose

not to solve the more exact (and difficult) H-F equations for the MO's of both spins

but arbitrarily define the LCAO MO's to be identical for electrons of either spin and

solve the SCF equations for one spin set only. These approximate solutions of the

(now modified) Roothaan procedure satisfy the equivalence restriction of Nesbet and

are thus insured of forming an orthonormal set of symmetry orbitals with which to

approximate the molecular ground state. While not exactly equivalent to the true solu-

tions of the H-F equations (which we cannot find), our MO's should differ from these

only in a negligible way.

The ground state configuration of OH (with Z symmetry) is taken to be

(1-)2 (20) (3-) (r +)2 ( a), Jo (4-2)

in which each of the MO's is doubly occupied except for the 7r orbital which alone has

an unpaired (a) spin. The 4o- orbitals are not occupied in the ground state and so

represent excited orbitals. The MO's expressed as LCAO's are simply written as

ma = Cmls + C mS + Cm p o + C mh; m=1,2,3,4
0i

+ (4-3)iT = p

T= p_

+

The degenerate orbitals, ir and iv , consisting of only one-member terms, have

their LCAO coefficient uniquely determined by the normalization condition. The H-F

equations thus reduce to a standard eigenvalue problem involving the solution of a

4 X 4 secular determinant for the LCAO MO's. Table 4-3 lists the computed coeffi-

cients for the SCF LCAO's along with the values of the orbital energies, Ei, for

three values of the internuclear distance. The inner-outer-shell mixing of the AO's

is very small. The Ir MO is made up almost purely from the s orbital (the oxygen

atomic Is function), the higher a orbitals contain only a small contribution from this

AO. The variation in charge distribution among the AO's is shown in Table 4-3 both

as a function of internuclear distance and among the a orbitals for a particular inter-

nuclear distance.

-11-
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(ELECTRONIC ENERGY OF THE OH MOLECULE)

The total energy of the molecule is the sum of the nuclear repulsion energy

and the one-electron energies of the occupied SCF LCAO's in the o configuration.

The binding energy is calculated by subtracting the total energy of the free atoms

from the value computed for the molecule. In Table 4-4, the results of these calcu-

lations are presented and compared with the corresponding experimental values. The

total molecular energy is quite good whereas the binding energy seems a bit disap-

pointing. Actually though, these values are consistent with the results of other SCF

LCAO calculations. For comparison, we list in Table 4-5 the results of Sahni ( 3 ) on

BH and Scherr (4 ) on N., the only other molecules reported to have been computed

employing no approximations other than those inherent in the method. (The results

of Karo and Olson on LiH discussed by them in this Report were not available when

Table 4-5 was prepared and so could not be included therein. ) Both authors used

Slater AO's with Slater's values for the exponents; the energy was calculated at a

value of the internuclear distance equal to the experimentally observed equilibrium

value. The data for OH listed in Table 4-5 was calculated at the internuclear separa-

tion equal to 2. 0. The total energy of the separated atoms for OH is seen to be better

than for N or BH. This is to be expected, since Hartree-Fock functions have more

physical content as AO's than do the simple Slater functions. Correspondingly, the

molecular energy also compares just as favorably. The magnitude of the binding

energy is about the same for all three calculations. Sahni uses the value of 2. 6 e. v.

for the observed dissociation energy. Since Gaydon( 5 )' actually recommends the value

of 3. 0 t . 4 e. v., both values were included in Table 4-5 to indicate the range of the

probable binding energy which was obtained for BH. Sahni does not specifically say

that he included a correction for the zero point vibration energy and so it is probably

quite correct to assume that no such correction was made. If included, this would

decrease his binding energy result, bringing it more in line with the other results

quoted in Table 4-5b.

As a check on the stability of the binding energy with respect to changes in

values of the integrals, the oxygen kinetic energy integrals were changed by as much

as . 04 Rydbergs. (These integrals were chosen because they represent the most in-

accurate integrals calculated in this work. ) The total energies of both the molecular

and free atom systems changed, but the binding energy was almost completely un-

affected.

CI Using SCF LCAO's

Having determined that set of LCAO MO's which gave the lowest energy of

a single configuration, we are now in a position to study the effects of configuration

interaction in further lowering the energy of the molecule. All possible configurations

possessing the appropriate symmetry ( w) are to be formed from the available
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(ELECTRONIC ENERGY OF THE OH MOLECULE)

LCAO MO's in Eq. (4-3). Since only the 4 a orbitals were not included in the o con-

figuration, the excited configurations, K, are easily formed by promoting electrons

from the lower lying occupied orbitals into the excited 4a states. These are presented

in Table 4-6 with the same notation as was used in Table 4-1. The iK are orthonormal

since the orbitals are, and so the formulae for the matrix elements of the Hamiltonian

between two Slater determinants are much simpler than for a non-orthogonal basis.

The CI problem is solved by diagonalizing the energy matrix (HKL). Since

there are 17 states made up from 23 Slater determinants, the computation of all the

matrix elements between them is no small job. Fortunately, the simplifications cited

by Nesbet ( 6 ) were used to reduce substantially the magnitude of the calculations.

According to Brillouin's theorem, the matrix elements of energy between de-

terminants which differ by a single orbital are identically zero. Our set of LCAO

MO's are solutions of the H-F equations, modified by the equivalence restriction.

That is, for single substitutions of orbitals of plus spin Brillouin's theorem is auto-

matically satisfied whereas the single substitution matrix elements involving orbitals

of negative spin are not zero, but are found nevertheless to be very small. We need

therefore only include those configurations which are formed by double substitution

for those occupied orbitals in Jo. This immediately eliminates the states 17 through

@10 inclusive from the configuration matrix.

The contributions of the excited configurations, K' towards lowering the

energy of Jo, can at best be very small, since as we have seen, jo itself is a fairly

good representation of the molecular ground state near the equilibrium internuclear

distance. (CI effects become increasingly important with increasing internuclear

distance because the MO's become an every poorer approximation as the molecular

system approaches the free atom stage. ) For this reason Nesbet( 6 ) has proposed the

use of second order perturbation theory for approximately diagonalizing the energy

matrix. Using the familiar formulae of perturbation theory, the configurations j4,

and 9 through 16 must play a negligible role, since the la- state lies about 40 Ryd-

bergs below the other one-electron states.

If the second order perturbation formula is used to diagonalize the secular

equation the total energy (and hence the dissociation energy as well) is lowered by

.0323 Rydbergs at the internuclear distance equal to 1. 8 (which is the value used in

the CI AO method described previously in the first section): the bordered determinant

approximation results in a similar lowering of .03Z 0; the exact diagonalization of

the 6 X 6 secular equation on Whirlwind gives a value of. 0303 for the same quantity.

Both the perturbation theory method and the bordered determinant method overestimate

*This method diagonalizes the matrix as approximated by the diagonal plus first

column matrix elements.
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Table 4-6

Enumeration of the MO configurations

+

State Coefficient le- 2r 3a ir +r 4w

ko + +- - +- +

+ +- +- + + +-

I +- +- +- + +

31 ++- +- + +-

a +- +- +- + +

++ ++ + +-

-1/v 7  +- - + +- ++

++ + +- - +

++ - + + +

17 b// +- + + - + + -+- +- + -

b 2/-/6 +- +- +- + +
8/ v/-6 +- + + +--/.,6 +- + +- + +

- , "- 4+- + ++- + +

I +/-Z+ + + + + +

-- + +
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Table 4-6 (con'd)

Enumeration of the MO configurations

+

State Coefficient 2a- 3T it +r 4o-

10ob  2/,6-+ + ++-+

-+//- 6 +

1//6 +- +

-/- +- + +

a 2,+ +- +- +

++

-1 !j~g - - + +- + +
S 1 +- +- +- +-

-1 a! .,/ '7- - + - + + - + --/.,/6- + + - + +

-/,/6 + + +- + +

15a  /v/Z" + - - +- + +

-1,1+7 +- + +

l6a - + + +- +- -

++ +

_ 15 " + - +- +- + +

- 1 ""- + +- +- + +

a. Negligible by second-order perturbation theory.
b. Negligible by Brillouin's theorem.
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(ELECTRONIC ENERGY OF THE OH MOLECULE)

the CI and so where possible exact diagonalization of the secular equation is pre-

ferred.

The result then of solving the CI problem in terms of the MO LCAO's as

basis is to give a value of the binding energy equal to -. 09Z Rydbergs. This compares

well with the value of -. 0764 Rydbergs reported for the AO scheme in the first sec-

tion. This comparison can only be made at the nuclear separation, R, equal to 1. 8

at which the AO calculation was carried out. The minimum of energy for the sinle

determinant approximation (see Table 4-4) occurs at R = 2. 05 atomic units which is

some ten percent larger than the observed value of 1. 834 a. u. This result indicates

that had the CI calculation of the first section been carried out at a value of nuclear

separation larger than the value actually used, we would certainly have obtained a

lower binding energy than was actually found.

Since the set of MO's is formed from the basic set of atomic orbitals, the

same subspace of Hilbert space is spanned by both sets. If all possible configurations

were formed from either set, the n-electron system would be equivalently described

by both. (7) Neither would form a more complete description than the other and so the

same energy levels would be derived from each.

The two calculations described cannot give the same results because the CI

expansions are not equivalent. The configurations formed from the AO's as basis

(see Table 4-1) did not include those states which resulted from exciting the oxygen

Is electrons into higher lying states. The CI calculation involving the SCF LCAO's,

expanded the total wave function as a linear combination of all the configurations which

could be obtained from the basic set of MO's. True, the configurations resulting

from exciting Ir electrons into higher orbitals were found to come into the expansion

with extremely small coefficients and so were completely left out of the secular de-

terminant. But the other o- orbitals each contain a small amount of the is oxygen AO,

and so the configurations already contain a small but appreciable contribution from

the Is states. If there were no mixing in the LCAO's between the s orbital and the

other spherically symmetric AO's, or if all the AO configurations were used, the two

solutions would then agree. The value of -. 0764 Rydbergs obtained for the binding

energy by the AO CI scheme is only . 016 Rydbergs above the result of the SCF LCAO

configuration interaction calculation. This seems to be a reasonable amount to attrib-

ute to the CI lowering which would be introduced by those (seven) configurations

neglected in the AO scheme. It may therefore be concluded that the results are con-

sistent among themselves and seem to indicate a fair degree of numerical accuracy.

Conclusions

The results of the CI studies are not as good as we would like them to be.

For closer agreement with experiment we should set up a more unrestricted CI
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(ELECTRONIC ENERGY OF THE OH MOLECULE)

calculation by expanding the basic set of functions, mixing in (say) AO's with higher

orbital angular momentum to provide the possibility of increased angular correlation. (8)

Such an expanded CI calculation would completely alter the character of the problem we

have completed here. There are no other Hartree-Fock orbitals for atomic oxygen

available with which to augment the set used here. If more orbitals are to be introduced,

it would be best to choose an entirely new set for the atom, so chosen as to provide

the maximum degree of correlation.

The major inadequacy of the calculation lies in what seems to be a poor de-

scription of the ir electrons. This is most easily seen in the MO picture where the ir

electrons are described by one-electron functions which are identical to the p+ and p_

oxygen orbitals. In the molecular environment this picture of the outer electrons can-

not be right. The complete localization of the it electrons around the oxygen center is

correct only at infinite separation. In the molecular environment some of the 7r-electron

charge clouds must be described by functions which spend an appreciable time near

the hydrogen center. Our description cannot do this, since we are using a restricted

set of AO's. We are again forced to conclude that in order to improve our results we

must expand our basic set as outlined above.
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5. GROUND STATE OF THE HYDROGEN MOLECULE

The exchange and hybrid integrals which were evaluated by Merryman's pro-

gram were found to be inaccurate for interatomic separation of one and two atomic

units. These integrals are now being recalculated by the method of expansion about
S1)

another center which is programmed for Whirlwind by F. J. Corbato. ( ] ) Expansion

of the exchange integrals gives infinite series which converge rapidly for all the

required integrals. For the internuclear distance of one atomic unit it was found that,

in all cases, seven terms of the series gave accuracy of six figures. The combination

of terms in the series was done on Whirlwind by a program written by L. P. Howland.

The Whirlwind time for evaluation of the final integrals averaged about 70 seconds per

integral.
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6. POLARIZATION EFFECTS IN THE FLUORINE ION

The numerical integration of the equations for our perturbed functions v

still show considerable sensitivity to the smoothness of the potential and the mesh

size. However, for the uniform field case we have obtained a complete check on the

perturbed functions of d-like symmetry and considerable improvement in the p and

s-like ones. Also, we have recently obtained the v function of d symmetry for the

dipole term of a point charge perturbing potential at a finite distance, R, from the

origin. For R = 1. 76 atomic units the v function for Neon has a behavior near the

origin very similar to the corresponding uniform field (R = G0) case and a maximum at

approximately r = R.

Because of the delays and difficulties in obtaining our distorted functions by

direct integration we have undertaken a calculation for the HF molecule based on a

small set of unperturbed functions to describe the F ion and including a single d-like

distorted function. This d function has been chosen to have a maximum very close to

the position of the H+ point charge. For the unperturbed functions the Is is F. W.

Brown's fit of his Hartree-Fock F calculation, the 2s is the single Slater atomic orbital

which most nearly fits Brown's 2s function when orthogonalized to the I s, and a single

Slater AO was used for the 2p with the exponent of the exponential chosen so the AO

has the same maximum as the Hartree-Fock function. Explicitly the radial parts of
-8. 75r -2. 40r -2. 6 7r 2 -2. OOr

the is, 2s, 2p, d-distorted functions are: e , re , re , and r e

respectively.

We have obtained all of the necessary atomic and potential integrals from R. K.

Nesbet's Whirlwind program (described by the writer and R. K. Nesbet in previous Prog-

ress Reports). These have been combined with the appropriate coefficients and classified

in terms of the molecular symmetry. That is, the axis of quantization for the atomic func-

tions is chosen as the internuclear axis allowing the atomic quantum number m 1 to go directly

into the corresponding molecular quantum number with the combining coefficients

the C k(h , .'m 1 )'s tabulated by Condon and Shortley. (1) Using these integrals the

parameter tapes for the Whirlwind program of the Roothaan scheme are being prepared.

Reference
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7. ENERGY BANDS OF GRAPHITE

The computation of energy bands in a two-dimensional model of graphite by

means of the tight-binding method has been completed. Current effort is being devoted

to the thesis write-up of this work. Thus, the following report is only a brief resume

of the basis of the calculation and the major results which were obtained.

The graphite energy band calculations were carried out assuming a structure

of an infinite two-dimensional hexagonal lattice of Carbon atoms. The atomic orbitals

used to make up the one-electron Bloch waves were the Hartree-Fock atomic orbitals

of the ground state neutral Carbon 3P configuration calculated by Jucys. (1) The Is

and 2p orbitals were each fitted by a linear combination of three corresponding analytic

Slater atomic orbitals, and the noded 2s orbital was fitted by a sum of three is and

three 2s Slater atomic orbitals. W The fits were of high accuracy and were made for

ease in the calculation of the many integrals. In the sense that the energy band cal-

culation made was a one-electron approximation, it was necessary to choose an ef-

fective potential for the crystal. The crystal potential was taken to be a superposition

of spherically symmetric atomic potentials. The atomic potential in turn was assumed

to be the Coulombic potential arising from the effective nuclear charge function, Zp(r),

centered on the atomic nucleus. The Z function for the 3P configuration has been
(3) p

calculated by Freeman, (3) and it was because of this convenience that the particular

configuration of Carbon chosen was used, since it was not felt that the current knowl-

edge of energy band solutions gave any other conclusive choice. For computational

convenience, the Z function was also fitted, a linear combination of four exponentials

being used.

All the one-electron, two-center integrals (overlap, kinetic energy and poten-

tial) were done by the use of the usual prolate spheroidal coordinate analytic integra-

tion techniques suitable for Slater atomic orbitals. (4) Thus, these integrals required

the evaluation of auxiliary functions ( 5 ' 6) followed by combinations of many terms.

All the one-electron, three-center potential integrals (and also the two-center poten-

tial integrals) were evaluated by the spherical coordinate expansion-about-another-

center technique, similar to that used by Lbwdin, (7) and Barnett and Coulson, (8) which

was described extensively in a previous Report. (9)

It is perhaps illuminating to give some of the computational perspective in-

volved in the overall calculation. Inasmuch as the magnitude of numerical work in-

volved was such that accuracy would have been difficult to maintain in any hand cal-

culation, most of the computational work was done on the high-speed electronic computer

Whirlwind I. The nearly total mechanization of the problem, although eliminating al-

most entirely any possible random mistakes, had the disadvantage of tending to obscure

possible systematic mistakes. The latter shift of emphasis is one of the principle

reasons that make the programming of a computer a non-trivial affair. A consequence

is that logical simplicity of the computational procedure becomes a goal which is often
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opposition to computational efficiency. There is also a great deal of difficulty in de-

vising adequate test procedures for computer programs, since of necessity they must

be tailored to the program itself. The ability of a programmer to cope with these

computer problems develops mostly with experience. A large fraction of the time

spent on the present calculation was thus used learning how to obtain the full poten-

tiality of a high-speed computer.

In carrying out the calculation, the work fell into stages for each of which

special computer programs were written. These were: a program for the semi-

automatic fitting of the atomic orbitals and the Zp function; (2) a program for generat-

ing the two-center integral auxiliary functions and then automatically combining terms

to give the integrals between Hartree-Fock orbitals; (5) a program for generating the

atomic orbital expansion functions necessary for the three-center potential integrals; (9)

a program for performing the basic numerical quadratures of the three-center poten-

tial integrals; (9) and a requantization and summation program for forming the appro-

priate three-center integrals from the basic numerical quadratures. (9) The foregoing

computer programs were sufficient machinery to prepare the basic two-center Hamil-

tonian and overlap integrals which served as input for the final master program which

performed the energy band calculation. Explicitly the basic two-center integrals were

of the form

_4 ( ff~i( P -(7JG) dT (7-1)
13 Pa P. a)-4

where the p are atomic orbitals, pa is the neighbor-vector, and

{ ()-- =I, (overlap)

= 172)) (7-2)

- -Z -  
, (Hamiltonian)

Pb P

the sum in the potential term being over all neighbor-vectors. In the present calcula-

tion, the three-center potential terms were neglected when 1 b or I' - I exceeded

the fourth neighbor-distance in the sum over Pb"

The operation of the master energy band program then proceeded as follows.

For a given value of the reduced wave vector, k, the program computed the Hamilton-

ian and overlap matrix elements arising from the Bloch waves constructed from the

atomic orbitals. These matrix elements were made real by taking judicious linear

combinations of the Bloch waves as basis states, and had the form
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where the terms in which Pa exceeded the ninth neighbor-distance were neglected.

The program next solved the usual variationally-derived secular equation of the form

_. H.(k) Vk(k) = Ei(k) k (7-4)
3 3

and stored for later use the eigenvalues E(ik). A new value of the wave vector was

then selected and the generation and solution of the secular equation repeated until

the pre-set values of the wave vector were exhausted. Finally for convenience, the

program displayed graphically on a photographic oscilloscope cross-sectional views

of the energy bands, Ei(R) vs k, for values of the wave vector along the edges of a

basic non-repeating 300-600-900 triangle of the first Brillouin zone.

As has been implied, the secular equation which was considered had as basis

states linear combinations of the ten one-electron Bloch waves formed from the Is,

Zs, and 2p atomic orbitals on each of the two atomic sites in the spatial unit cell.

Because of the reflection symmetry in the Hamiltonian operator of the two-dimensional

graphite lattice, the secular equation one obtains from these ten states immediately

factors into two independent equations, one of order eight arising from reflection

symmetric Bloch waves (a- states), and the other of order two from reflection anti-

symmetric Bloch waves (ir states). Thus the master computer program was arranged

to independently calculate the energy band solutions arising from each of these secu-

lar equations, but the final results were graphically superimposed.

The major physical significance in a two-dimensional energy band calculation

of graphite is the size of the gap between the five lowest (occupied) and the higher

(excited) cy bands, and in particular whether or not the two lower W bands (valence and

conduction) which are degenerate at one value of the wave vector, have their point of

degeneracy in the (r band gap. If such a a- band gap is large enough to include all of

the r bands, then it follows that a reasonable approximation for computing the con-

duction properties of a three-dimensional graphite would be to ignore the 0- states; in

the three-dimensional crystal the cr and w Bloch waves of alternate graphite layers

interact, but the terminology is still used. Starting from the original work of Wallace, (10)

this approximation has been the basis of all graphite energy band calculations with the

exception of Lomer who has also considered two-dimensional graphite with a, bands. (11)

As will be seen later, the numerical work of Lomer is believed to have a very serious

approximation.
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a~ 2RYD

4IRYD--_BANDS -- o"BANDS

0 RYD -

0 B0

-1 RyD
BA 0

Fig. 7-1 Fig. 7-2

The energy band solution of the present calculation is shown in Fig. 7-2

where the horizontal dimensions are the edges of the basic triangle of the first Bril-

louin zone as shown in Fig. 7-1 . Energy values of interior points of the triangle

were also found, but for brevity these values are not given here since it was found

that the interior energy bands vary smoothly from the edge band values. Further-

more, the two lowest 0- bands arising almost entirely from the Is Bloch waves,

are omitted from Fig. 7-2 since the bands are nearly independent of the wave vector

and at an average value of -15. 75 Rydbergs. It is observed that the highest occupied

point in the r bands occurs at pt. 0, (k'= 0), with a value of +. 430 Rydbergs. The

lowest excited a- band has roughly a constant minimum value for wave vector values

forming an approximate circle about pt. 0, the minimum value being about + 1. 158

Rydbergs. The degeneracy point of the w bands falls at + . 570 Rydbergs, a value

representing the Fermi level for zero temperature. Thus, it is clear that these re-

sults support to some extent the usual approximation of neglecting the or states in cal-

culations of graphite conduction properties. Moreover, this calculation shows by

virtue of the overlapping of the tr and wr bands that for a cohesive energy calculation,

which depends on energy values for all wave vectors of the Brillouin zone, the a- states

must be included.

Consideration can also be made of the potential function used in the present

calculation. The potential, which was formed by superposition of the Zp function,

clearly omits exchange effects. Slater has given a procedure for introducing an ap-

proximate exchange potential correction within the framework of the one-electron
approximation.(1Z) This exchange potential correction, if applied, would be propor-

tional to the cube root of the charge density of the occupied crystal wave functions.
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Consequently, one would expect the occupied bands to be lowered more in energy than

the unoccupied bands, since the unoccupied wave functions are orthogonal to the occu-

pied wave functions. Thus, it is plausible that a more careful consideration of ex-

change effects in the present calculation would only broaden the a* band energy gap and

would leave the present results qualitatively unchanged.

One of the more striking features of the present results is the smoothness of

the energy bands. In fact, these bands are similar to those obtained from the Slater

and Koster interpolation procedure wherein the tight-binding method is used with

neglect of all but a few nearest-neighbor integrals. (13) It is therefore of interest to

examine the stability of the present results in view of the several possible simplifying

approximations.

Omission of the Is Bloch waves was found to have an overall lowering and

warping effect on the a, bands in such a way that the au band gap was roughly reduced

by half. Thus, the often-recognized importance of orthogonality is again emphasized.

A second possible approximation made was the omission of all the three-center poten-

tial integrals. This left the ir bands nearly the same but made a very pronounced

change in the a- bands, again closing the a- band gap down to about half, but also lower-

ing the gap so far that the ir band Fermi level no longer was included.

Finally, the solutions were examined with respect to the approximation of

omitting the higher neighbor integrals. The stable solution, which included up to

ninth neighbor integrals, was found to be only slightly warped when only up to fifth

neighbor integrals were included in the a- bands and when only up to third neighbor

integrals were included in the w bands. However, further truncation of the neighbor

integrals of the a- bands caused violent changes. (It is for this reason that the calcu-

lation made by Lomer, which included only first neighbor integrals, is not believed

to be valid. ) In addition, the effects of truncating only Hamiltonian or only overlap

neighbor integrals were investigated. It was found that the solution was sensitive to

both Hamiltonian and overlap neighbor truncation to roughly the same extent and that

the two effects were essentially additive.

Thus, the results of all the approximation tests indicate clearly that the

tight-binding method when used in a non-empirical way must be carried out with con-

siderable mathematical rigor in order that a meaningful solution will be obtained.
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II

8. LATTICE ENERGY OF POTASSIUM CHLORIDE

The lattice energy of potassium chloride has been calculated in conjunction

with a study of the electronic structure of the perfect and almost perfect crystal. ()

Lattice energy is the energy of the crystal relative to the energy of its separated ions;

its negative is the cohesive energy. The present calculation is modeled directly after

the comprehensive energy calculations of Dr. P. 0. L6wdin. (?) In the present work,

however, interactions between nearest chlorine ions (second neighbors in the lattice)

have been included along with those between nearest neighbor potassium and chlorine

ions; L6wdin limited himself to the latter. One purpose of doing the new calculation

is to determine the contribution to lattice energy of these second neighbor interactions.

A further purpose of the new calculation is to provide checks on quantities

which are being used in my study of electronic structure. For this reason my equa-

tions for contributions to lattice energy are written as far as possible in terms of quan-

tities used directly in the electronic structure work. Term-by-term comparison with

the calculations of L6wdin and with calculations based on the empirical Born-Mayer

model will provide the check on these quantities.

Equations for Lattice Energy

The discussion below follows closely that given by Lbwdin in his thesis,

and in general the notation is his.

Consider a perfect, infinite crystal of potassium chloride with its ions fixed

and in its ground state. The crystal is divided into large identical regions, a particu-

lar region being symbolized by R. Let there be N unit cells and a total of 2M electrons

in the region R. We take as a ground-state, many-electron wave function a single de-

terminant (1, 2 ... 2M) made up of M orthonormal space orbitals pi(j), each being

doubly occupied; thus we take

C1i, 2 ... ZM) [(= ! lump det fpi~(j) n(nj,81

where q(j) stands for one of the spin functions, a(j) or P(j), and both occur for each i.

This definition leads to the normalization integral

R *(l,2 ... 2M) (l,2 ... ZM) = I. (8-)

Use of the symbol dT in (8-2) is meant to imply spin summation as well as integration;

use of dv will mean integration over space only.

With the above definitions the total energy of the crystal becomes

ET N R H dTI ... dTZM.
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Here H is the crystal Hamiltonian, which we take to be as follows

ZM ZM
H -7 H + _7 Gij + W, (8-4)

j=l i,j=l

In (8-4)

ZN 2zg M z9z
H- V. 2 - (sites g) 9, G =- W=

1r. ij r.. r
jg ij g, g' = 1 gg'

The letter g is used to identify sites, and Z is the nuclear charge on site g; energies

are in Rydbergs and distances in atomic units. Substituting this Hamiltonian in Eq.

(8-3), the total energy becomes

M M
ET _7 (H + M + M - ( (8-5)

N i i,j=l1

where (HIii) =fi*(l) H I i(l) dv 1 , and (GIijIkl) = fi*(l) P P) r' k(Z)p,(2)dvIdvZ.j

We now choose to construct the orthonormal orbitals q i(j) by making linear

combinations of the M normally-occupied, free-ion, Hartree-Fock space orbitals

urn(j), centered on appropriate sites in the crystal. Thus we write Li(j) as follows:

M
i(j )  I ami ur(j), i= 1 ... M. (8-6)

m1

The indices m, n, p and q will be reserved for identifying free-ion orbitals. With this

equation for Li(j), Eq. (8-5) becomes

M M M M

E + 7 an] {2a* a (H* mn) + a [ a Glmnpq)-(Glmqfpn)l
T - I ami anil f2Io)+ q

m,n=l i=l p,q=l j=1 I qj

(8-7)

Eq. (8-6) relating the +'s to the u's can be rewritten as a matrix operation on vectors

in the form

T = UA, (8-8)

where T and U are M-dimensional column vectors of the functions qji and um respec-

tively, and A is the M X M matrix of coefficients ami.

Let us define an M X M overlap matrix A for the free-ion orbitals by the

following equation:
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A = det {mn}I m= I ... M, n I... M, (8-9)

where Amn 4 m U(1) un(1) dvl. Let us also define

S=A-I , or Smn = 4mn - 6mn (8-10)

The corresponding overlap matrix for the 4b's is the M X M unit matrix. With these

definitions the orthonormality of the 4's is expressed by the matrix equation

i= AtAA,(-1

where At is the adjoint of A. Since A is non-singular it has an inverse A - .
Similarly A has an inverse A- . Multiplying Eq. (8-11) from the right by A- A1 -

and from the left by A, (8-11) becomes

AAt = A-, (8-12)

M
*-I

or -a a =A (8-13)ni mi nm

These equations must hold whether 4i is a Bloch function or a Wannier function or a

L3wdin orthonormal function or whatever. They follow simply from the fact that we

are constructing M orthonormal functions p from M linearly independent functions u.

The identity of Eq. (8-13) simplifies the equation for total energy, Eq. (8-7), and the

latter now becomes

M M

E = W + AX fA{(Hlmn) + Z A~l[Z(Gjmnjpq) - (Glmqjpn)]) (8-14)
N m,n=l p,q=l

To obtain the lattice energy from ET we must subtract the total energy per

unit cell of a crystal with an infinite interionic distance; the latter energy we call E •

Since the orbitals u m(j) are free-ion Hartree-Fock orbitals the consistent definition

of this energy of the separated ions is

I {2 g(Hgl mm) + 7 [2(GfImmIpp) (GImpIpm} (8-15)
g m m p

where H g = -
z - ZZ /r ; we use Lbwdin's convention that g means a sum over

orbitals u on site g, while . will mean a sum over orbitals on all sites in R ex-
m

cept site g. In order to allow explicit subtraction of E from ETo we define

S + P (8-16)
nm ffi nm nm"
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Using Eqs. (8-14), (8-15), and (8-16) we can now write out equations for the crystal

energy, thus;

E = ET - E = Eelstat + Eex + E S , (8-17)

where

E W + + N [ r, (' mm) + (GImmIpp)]
elstat - g m g'g r m p

i 1

ex E[- _g Z4(Gjmpjpm , and
g m p (8-18)

ES = 1 X X g z Pnm{2(Hfmn) + Z P [Z(GjmnIpq) - (Glmqlpn)]

g m n pq qP

+ z ,: [z(Glmnlpp) - (GlmpIpn)J}.
p

This separation into the three terms of Eqs. (8-18) follows L6wdin's procedure; Eelstat

is made up entirely of electrostatic interaction energies, Eex is a crystal exchange

contribution, and ES is a contribution depending on free-ion overlap.

Electrostatic Energy

The electrostatic term in (8-18), Eelstat, can be rewritten in a more obvious

form. Using the definition of W from (8-4), we can write

-1 1 # Zp (1) pg.(z)
Egtt-Z 'y g r dv1 dv 2, (8-19)

elstat N2 g g# g12

where

I) = Z 6(r, 0) - 2 - um(1) ur( W.

m

This quantity, pg(l), is the charge density of a free Hartree-Fock ion at site g, in-

cluding its nuclear "charge density". E elstat is therefore the Coulomb energy of in-

teraction of Hartree-Fock ions superposed to form a crystal.

For large interionic distance and no overlapping, Eelstat must reduce to the

Madelung energy. Let cg be the valence of the ion on site g, and let p';(1) be a neutral

spherical charge distribution of the ion at site g, such that

-32-A



4-4-

(LATTICE ENERGY OF POTASSIUM CHLORIDE)

pg(i) = p g(9) + Eg 6(r I A

With these definitions,

elstat Z (1) p, (2)

g, gf rgg, g , 

The first term is directly the Madelung energy, - 2a/a; a is the Madelung constant

(positive by definition), and a is the interionic distance. This term by itself accounts

for most of the observed cohesive energy and thus prompts the ionic starting approxi-

mation. In the second term of Eq. (8-20), the sum over g can be reduced to N times

the sum over the two sites g in a single cell, say cell 0. Thus we can write

Eelstat =Emad + Ecc, (8-21)

where

Emad = - a (8-22)

and cell 0 mad 57 1
r, (1) pgCz)

c 9 dv1 dv2 (8-23)gcc g'$g r12

In Eq. (8-23) for E cc p;(1) and p;,'(2) are neutral spherical distributions, and so have
no interaction unless the electronic shells penetrate one another. When there is over-

lap, Ecc represents a correction to Emad due to the electronic charge extension; Ecc

is called the Coulomb correction energy by Lowdin. If the nucleus of no ion is appre-
ciably within the electronic shells of any of its neighbors, then E cc is negative and

represents an attraction of the ions for one another.

Exchange Energy

Reducing the sum over g in the second of Eqs. (8-18), the exchange energy
is found to be

cellO

Eex = - Z Z,.. (GI mpj pm) . (8-24)
g m p

The exchange energy is therefore the sum over all electrons in a single cell of the

exchange interaction between those electron and electrons on other ions. E ex is

necessarily negative and implies an attraction of the ions for one another.

ES

The S-energy, Es, depends on the coefficients Pnm are derived from the in-

-33-



"1

(LATTICE ENERGY OF POTASSIUM CHLORIDE)

verse overlap matrix, A 1 L6wdin showed that this matrix A can often be expanded

in a convergent infinite series in S(defined by Eq. (8-10); thus

A-, = _. - S + S2 -...

when this expansion is valid, the coefficients Pnm are given by

P nm Snm + Snp Sp
p

If there is no overlap between ions, then all the Pnm are zero, and E S is zero.

To give E S some meaning let us look at the crystal charge density, p(l). In

our approximation p(l) is given by

M

p() = 2 j i() 1i(l) = 2 _ a-I u*(1) u(1),
i=l m,n

or using Eq. (8-13) for & nm'

M

p() = 2 > um(1) ur(1) + 2 - Pnm u*(1) un(1) (8-25)
m=1 

mn

Thus p(I) is made up of a superposition of free ion charge densities, which of course

neutralizes the nuclear charges, plus a neutral correction charge density. The cor-

rection term removes electronic charge from regions of overlap and adds it to the

spherical charge of the ion. For KC1, for example, about 0. 2 electron charges are

added to the original charge of a free C1- ion. This correction charge is a direct

result of the exclusion principle and of the principle of the indistinguishability of elec-

trons: these principles led us to use a single determinant rather than a simple prod-

uct for the crystal wave function.

The S-energy can now be thought of as the self energy of this correction

charge density plus its energy of interaction with the charge density arising from the

superposition of free ions. Since E S includes kinetic, coulomb, and exchange terms,

the contributions to it are not all of one sign. The overall term must be positive,

however, as it represents a shift of charge from the optimum free ion distribution to

something more concentrated about the nucleii; a shift of this sort implies that E S

must contain terms which represent an increase in the energy of the "individual ions"

as well as terms which reduce the effect of the overlap-dependent, negative quantities,

Ecc and E ex. Both of these conclusions imply a positive energy term ES.. This

S-energy is the only term which opposes binding, therefore, and it is E which pre-

vents collapse of the KCI crystal.
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For calculational purposes the equation for Est the third of Eqs. (8-18). Will

be rewritten to involve one-electron matrix elements. From a previous Report, (3)

these matrix elements are given by the equation

M

Hmn =(HImn) + A _ [2(Glmnlpq) - (GtmqIpn)] (8-26)
p, q=

Using this, the equation for E S (Eq. (8-18)) can be written as

E g nm Qmn (8-27)
ESN g m n -

where

Qmn = 2Hmn - Pqp [2 (GjmnIpq) - (GjmqIpn) ".

pq

Qmn is easily calculated from the elements Hmn and from terms which have been

calculated as part of the ingredients of Hmn. In Eq. (8-27) the terms for which m

and n are on the same site are negative while the others are positive. An alternative

form in which all contributions are positive is desirable. By definition,

- = 1 = (1 + P)(I+ S) = 1 + P + S + PS, (8-28)

or

P + S + PS = 0

th
The (nm) equation of this form is

P nm nm Pnp Spm" (8-29)
P

In Eq. (8-27) for E S we can separate from the sum those terms for which n is on the

same site as m. We substitute Eq. (8-29) for Pnm in those terms, realizing that here

Snm is zero; we interchange orders of certain summations; we change the names of

a few indices; and finally we obtain for the S-energy:

cell O 0. Q £ ,1

S= Z F 7 -Z Pnm[Qmn- SmpQpnj (830)
g m glig n p

In this form all the contributions to E S are positive and the cancellation of terms in

the square brackets becomes more exact as the orbitals involved become more tightly

bound. E S will be calculated from Eq. (8-30).
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Calculations
The free-ion orbitals um(j) are chosen real, and the radial functions are

linear combinations of Slater orbitals fitted to the Hartree-Hartree numerical tables.

L6wdin's fit(2) was used for the important Cl- 3 p orbital, and new fits were made for

the CI- 3s and all K+ orbitals. The orthonormalized fitted functions reproduced the

Hartree-Fock energy parameters of Hartree and Hartree to about the accuracy with

which they are given. 4) With these orbitals the one- and two-electron integrals required

in Eqs. (8-23), (8-24), (8-26), and (8-30) were calculated by the Barnett-Coulson

scheme (as adapted for Whirlwind by F. J. Corbato"); (5) in this scheme all the orbitals

in an integral are expanded in spherical harmonics about some one center. For the

most part only integrals involving the outer shell orbitals (n = 3) were included. Ef-

fective nuclear charges for potential for the ions were calculated for use in Eq. (8-23).

Important three-center integrals involving 1/r on one center were calculated exactly,

while other three- and four-center integrals were estimated. The coefficients Pnm

were found by using their symmetry properties and solving a set of eighteen simultane-

ous equations for eighteen A-nl s given the values of A . The results for P agreednm nm nmi
with the first term of a Lbwdin power series in S to one figure; and they agreed with a

more complete expansion to three or four figures in the few cases tested.

Results

Although Ecc' Eex and ES have been discussed separately above, this separation

has little physical significance. Their magnitudes all increase with electronic over-

lap and go to zero if there is no overlap. E cc and E ex are negative, and the E S is

positive, so there is important cancellation among them. We shall therefore lump the

three terms together into a single contribution which we shall call the overlap energy,

E ov, after Born and Huang. (6) To summarize our equations and notation, the lattice

energy is now given by

E=Emad + E (8-31)

where

Eov = Ecc + Eex + ES; (8-32)

here Ecc is given by Eq. (8-23), Eex by (8-24), and ES by (8-18), (8-27), or (8-30).
The results of the present calculation are summarized in row (A) of the fol-

lowing table. The notation in the first column indicates that both chlorine-potassium

and chlorine-chlorine interactions were included. The value of the interionic distance
a used was 5. 9007 a. u. or 3. 1Z2 A, appropriate to KCI at - 180° C (where the V-center

experiments are performed). The predominant contribution to E is the negative

Madelung energy; the overlap energy provides a ten percent positive correction to this.
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Table 8-1

Crystal energy of KCI: Summary of results
in kilocalories/mole

E = Emad
Source Emad Ecc Eex E S  Eov + Eov U

A) H(Cl, K + C1, C1) -185.8 -21.0 -60.1 +106.6 +25.5 -160.3

B) H(C1, K) -185.8 -17.7 -49.6 (+ 89.3) (+22.0)

C) Lbwdin (Cl, K) -185.8 -16.5 -48.6 + 84.0 +18.9 -166.9

D) A-C (Cl, CI) + 6.5

E) Huggins -185.8 +23.2 -162.6 -167.9

F) Exp. (Born-Mayer) -167.8 2

It is simple to obtain the partial values of Ecc and E ex, calculated on L6wdin's

assumption that there is no appreciable chlorine-chlorine overlap; the results are

shown in row (B) of Table 8-1. It is not possible to find the value of E S appropriate to

L6wdin's assumption, however, unless both Hmn and Pmn are redetermined (Eq. (8-31)).

It is possible to obtain something close to L~wdin's E S , however, by extending the sum-

mations of Eq. (8-31) only over pairs (n, m) which correspond to potassium-chlorine

pairs. Such an approximate value is shown in parenthesis in row (B) of Table 8-1; a

value of E ov calculated from this approximate E S is also shown in parenthesis.

L~wdin's results are shown in row (C) for comparison with the results of row

(B). The values of Ecc and Eex seem to compare fairly well between rows; the two

rows should be the same, of course, if the orbitals used are identical in the two cal-

culations. Only the Cl- 3p orbitals are identical, however, and the interactions of my

analytic K + functions with the Cl- functions might be expected to be larger in magni-

tude due to the longer tails. The approximate E S of row (B) is in qualitative agree-

ment with Lowdin's value. The general agreement between rows (B) and (C), then,

along with other consistency checks, is taken as providing a fairly good check on the

quantities used here and to be used in the electronic structure calculations.

The contribution of the Cl, Cl interaction to lattice energy is approximately

the difference between my results (row A) and L6wdin's (row C); this would be exactly

true if the orbitals used were the same. In L6wdin's approximation the overlap energy

is 18. 9 kcal/mole; then the Cl, CI interaction contributes another 6. 5 kcal/mole (row

D) to this and hence to the lattice energy. Further interactions involving inner shell

electrons or electrons on more distant neighbors may add another one or two kcal/mole

to the values of Eov and E in row (A), but probably not more than that. Computational

errors probably provide an additional uncertainty in Eov and E of about one kcal/mole.

The value of E in row (A) is therefore probably within two or three kcal/mole of the
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correct value based on the wave function assumed.

A comparison of the foregoing results with experiment will be made via theo-

retical analysis based on the Born-Mayer model. The most up-to-date refinements

of the latter work were made by M. L. Huggins. (7) In that work the lattice energy of

an NaCl-type lattice was taken to be (in C. G. S. units)

(8-33)

+ b6 X(r + + r- - a) X(Zr_ - /-Za) X(2r + -/2a+ b6 e + + b 4. 5e + +b7. 5e ,1

where U is regarded as a function of the interionic distance a. The first bracketed

term in Eq. (8-33) is the Madelung energy, and a is the same constant which appears

in (8-22). The second bracketed term contains the contributions of van der Waals' or

dipole-dipole interactions between the ions and of dipole-quadrupole interactions; the

constants C and D were determined by Mayer using crystal spectroscopic data. The

third bracketed term in Eq. (8-33) is the zero-point energy of the lattice, v max being

a Debye cutoff frequency. The last bracketed term contains three quantities, the first

representing repulsion between nearest positive and negative ions, the second between

nearest negative ions, and the third between nearest positive ions. The constants b,

X, r+, and r are undetermined; a /Z - in the exponents of the last two terms is the

second neighbor separation; and the numerical coefficients were determined by rules

of Pauling.

In his calculation, Huggins chooses an arbitrary value for b. He uses a value

of X calculated by Born and Mayer, who fitted compressibility and equilibrium-distance

data, and who averaged X over all alkali halides. He then obtains a set of "ionic radii"

r + and r to predict accurate interionic distances. With these radii he recomputes X

and performs another cycle. The process leads to a lattice energy U which is the

energy of the lattice at 0 K relative to the energy of the separated ions at 0 K. His

result, given in the last column of row (E) of Table 8-1 agrees with the experimental

value obtained by the Born-Haber cycle (row F) to within 0. 1 kcal/mole, though the

uncertainty in the latter is about 2 kcal/mole.

What has been called E in the present work is not the same thing as Huggins'

U. To obtain something comparable to U the zero-point energy of the lattice should be
o

added to E and my interionic distance a should be the 0 K value. Both these effects

are small. The important difference between U and E is that the former explicitly in-

cludes the dipole-dipole and dipole-quadrupole interactions between electrons on differ-

ent ions in the lattice. These effects imply a correlation of the motion of electrons on

different ions. A single determinant wave function provides no possibility for such
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correlation, except in a limited way through exchange correlation. Only by configura-

tion interaction, using our single determinant p as a leading term, can we obtain the

necessary correlation effects.

If our starting determinant (Eq. (8-1)) were the best possible (determined by

a Hartree-Fock procedure), then separate configuration interactions for the crystal

and for the separated ions should lead to a correction to E which is roughly given by

the empirical van der Waals terms in Eq. (8-33). The correlation effects within any

ion should cancel out in the process of subtracting E from ET. Since our starting

determinant is not the best possible, the configuration interactions must also correct

for deficiencies in the one-electron orbitals and yield a larger correction to E than the

empirical van der Waals terms would predict. On the basis of these remarks it would I
appear that if our single determinant is the best, then the value of Eov obtained from ]
it should agree with the repulsion terms calculated by Huggins (the last bracketed

terms in Eq. (8-33)), since Huggins' overall result agrees so well with experiment.

Because our determinant is not the best, Eov should be larger than the Huggins repul-

sion, leading to too high a crystal energy.

The Huggins repulsion terms were recalculated using his constants, but my

value of the interionic distance a: the result appears in row (E) of Table 8-1 under theI

heading Eov. E in this row is of course the same as in all other rows. The value
v mad-

of Eov in row (A) is larger than the Huggins repulsion by about ten percent, consistent

with the discussion of the preceding paragraph. From our earlier discussion this dif-

ference might increase to fifteen percent if further neighbors were included in the cal-

culation. According to Lwdin's results, however, the calculated value of Eov is

substantially less than the Huggins repulsion; in fact his value of E is almost as low

as U itself, and it leaves no room for the correlation effects which must occur, In-

clusion of the second neighbor Cl, C1 interactions has therefore removed an apparent

anomoly of the quantum mechanical calculation.

The comparisons above appear to justify roughly the starting approximation

of using a single determinant of free-ion orbitals for the crystal wave function. In

regions midway between ions this wave function and the charge density it predicts can-

not be too good, but the correction charge which it introduces (Eq. (8-25)) does modify f
the charge of superposed free ions in the right direction. Small errors in the wave

function do not appreciably affect the energy value, of course, and our value for the

lattice energy profits from this insensitivity.

Several interesting facts were uncovered in analyzing Huggins' calculation.

Our equations for contributions to Eov suggest that Eov might vary with interionic

distance as the square of some critical overlap or overlaps. An overlap integral be-

tween orbitals on two separated ions varies exponentially with r unless r is too small.

A function A+_ e r was therefore fitted to a curve of the square of the largest Cl, K
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overlap integral versus r, and a value for X+ - of 3.6 per A was found. Another func-

tion A-- e X -r was fitted for the largest Cl, Cl overlap, and a value for _ of 2. 8 per

A was found. The value which Huggins determined for X in Eq. (8-33), on the other

hand, was 3. 00 per A. Thus Huggins' k is a mean between values expected from vari-

ation of these largest overlap integrals.

A further point is that the Huggins value for Eov, 23.2 kcal/mole, is made up

of three contributions, 22. 26 for the +- term, 0. 63 for the -- term, and 0. 32 for the

++ term. The present calculation indicates that the relative contributions of Huggins'

+- term and his - - term is far from representing the relative contributions of Cl, K

and Cl, Cl interactions. The fact that X is a mean between X+_ and X__ (preceding

paragraph), rather than being much nearer X+_, again indicates that the +- term must

be including a large part of the Cl, Cl contribution. This fact may well be responsible

for the errors Huggins finds in values of the compressibility and of the maximum op-

tical frequency which he obtains from his equation for U.
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9. CALCULATIONS ON ATOMIC IRON

In writing up the results of this calculation, we have included the one-

electron wave functions, one-electron energy parameters, total charge density for

electrons of each spin total potential function, and the components of all the coulomb

and exchange integrals (not, as yet, kinetic energy). Although it is expected to in-

clude these quantities in the published paper, any and all are currently available

from the writer.

The behavior of the radii as a function of distance from the nucleus were

determined from the charge densities of each spin, p+ and p_. The size of these

radii are a measure of the applicability of the particular approximation 1 ) employed

in the cdlculation.

Let us consider a particular orbital ui describing an electron of plus spin.

Then, as described in the reference, the potential entering into the Hartree-Fock

equation for this orbital is constructed from the total charge density (p+ + p_) and an

additional charge distribution, the so-called "Fermi" or "exchange hole". This ex-

change hole corrects the distribution of charge in the immediate vicinity of the elec-

tron occupying u i by subtracting from p+ (in this case) a quantity of charge equivalent j
to one electronic charge. The density of this quantity of charge falls off as we move

away from the position of the electron and the calculation of this density for the free-

electron case(1) shows that it falls to small values a distance r 0 away where

4.ro 3r p, e

which would give the radius of this exchange hole if the exchange charge density were

uniform and occupied a sphere just b, rge enough to correspond to removal of one

electronic charge.

One of the limitations on the use of the free-electron approximation used in

this calculation for treating exchange is the requirement that the potential in which

an electron moves be essentially constant over the exchange hole. Since the quanti-

ties p+ and p_ were available, the radii of the exchange holes for plus and minus spin,

as defined above, can be and were found as a function of distance from the origin.

Considering first the radius of the plus spin exchange hole, we find that it has small

values near the origin (. 045 atomic units '  at . 02 a. u. from the nucleus) and increases

in a roughly linear fashion with a slope of about 1. The radius for the minus spin

hole follows much the same behavior but is on the average 0. 3 a. u. greater than the

corresponding radius of the plus spin hole.

The larger radius for minus spin is a reflection of the fact that we have

four fewer electrons of minus spin in our particular configuration. The radii are
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somewhat larger than one might hope if the potential were to be constant over the

hole.
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10. AN AUGMENTED PLANE WAVE METHOD AS APPLIED TO
SODIUM AND CHROMIUM

Testing of the matrix element generation routine is still going on. It appears,

however, that production work will soon begin. In the course of testing it was found

that the normalization constant for the radial wave functions for angular momentum

greater than eight were negative. The error was traced to a program which, I believe,

was used by Howarth in his calculation on copper. However, the error was easily cor-

rected. The corrected version is now being used until a completely new and recently

written program for the calculation of overlap and ratio of slope to function for the

radial components of APW is tested.

Work on chromium has been halted until a better potential than has been used

can be obtained. It is planned to use potentials obtained by Nesbet's routines for atoms.

M. M. Saffren
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11. DESCRIPTION OF MANY-ELECTRON SYSTEMS BY TWO-PAR'IICLE ORBITALS

I have described in previous reports( l ) the application of my Coulomb hole

short-range correlation correction to two-electron systems, and the way in which two-

particle orbitals so obtained may be combined to form N-electron wave functions. In

this Report, I shall mention some simplifications of the procedure, and the types of

integrals which must be evaluated in calculations on systems described by such wave

functions.

Considering a system which may be described in the orbital approximation by

a single determinant 4 of orthonormal spin-orbitals 4)k(i), the corrected wave function

is

2 ... N) = z ... N) f1 + - f(ij)} (11-1)
i<j

where f'(i, j) are correction functions, each confined to the particular region where
r.. is small -- the first restriction being that regions where more than one of the r..

are small are arbitrarily excluded. By the strict derivation of the Coulomb hole cor-

rection, the two-electron function f'(i, j) and the radius S(i, j) of the correction sphere

should depend on the positions and spins of the other N - 2 electrons; the second re-

striction is to neglect this, and take f'(i, j) and S(i, j) as being of the same form for all

pairs, whether singlet or triplet pairs, regardless of the effect of the other N - 2

electrons. It is by these two simplifying restrictions that we can use the form (1-)

for the N-electron wave function; it is also thanks to these restrictions that all proper-

ties of the corrected wave function can be calculated in terms of a few basic integrals,

common to all systems of the same symmetry. The relation of f'(i, j) to the f(i, j) used

before ( 1) is simply that f'(i, j) = f(i, j) - I, so that f'(i, j) is zero outside the correction

region. I further define G(i, j) = [f(i, j)2 - 1, which performs exactly the same role

in the expansion of or of *nn as does f'(i, j) in the expansion of I in (I1-1), so that

= 1 m4n I + G(i,j (I-z)m n = m n i<j

Using this expansion, the diagonal density matrices (using the terminology of

L6wdin( Z)) for the corrected N-electron wave function can be expressed in terms of

the density matrices for the uncorrected 4 and the following quantities:

tab, cd ( i j )  =  4a ( ) 'b ( )  #c( j ) 4d (j ) G(i, j)

Tlab, cd(i) = f tab, cd (i ' j)d-3  
(11-3)r ij < 2SiQ

tacd = 'r.<ZSj ab, cd ) dT1 = Jr qab, cd(iD j ) dii= dr-j

j-f4 
i j 4 -i j
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(DESCRIPTION OF MANY-ELECTRON SYSTEMS BY TWO-PARTICLE ORBITALS)

the integrals being taken only over the corrected region. The expressions for the den-

sity matrices are obtained straightforwardly by methods like those usually used in ob-

taining matrix elements between determinantal wave functions; (z) for instance, the

normalization integral is

d d ... J f*I dT ... dN + 2 kk,1 (11-4)

When the average value of a one-electron operator n 1 is to be computed, two-

electron integrals over the correction functions are needed

AD, (abIcd) = * f (1)4Jc(2)4qd(2) ff(1Z) lb(1)f(12)-f1lb(l)} dTldT 2  (11-5)
rl12< ZS 12

For two-electron operators, Q 12, unfortunately including the electron repulsion oper-

ator in the Hamiltonian, three-electron correction integrals are needed:

AM l (ab Icd Ief) = q, * )@ (2)+ *(3) f (3) f(13) I0 b1 dZf(13) "

13 < 
2S13

(11-6)
- S212b(1) Jd(2) dT 1 dT'2 dT3

I am now writing programs to compute the one- and two-electron integrals

like (11-3) and (11-5) for the case of spherical symmetry -- that is, for the He atom,

the same integrals with changed parameters being applicable to any atom. The case

of atoms not in S states can be handled by the same programs by the device of intro-

ducing an angular part of the correction function f(i, j) so that the total corrected wave

function in the corrected region is made independent of the direction of the interelec-

tron vector -- the essential dependence on the magnitude rij thus not being affected.

The three-electron integrals like (11-6) are not yet being attempted! Com-

putational difficulty for a one-center, three-electron integral is comparable with that

for a two-center, two-electron integral.
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12. ON THE POLARON ENERGY AND MASS

R. P. Feynman ( l ) in his approach to the polaron problem has compared the

problem of an electron interacting with the phonon field with that of an electron inter-

acting harmonically with a second particle of arbitrary mass. He has achieved a

variational expression for the ground state energy of the first problem in terms of the

two variable parameters of the second, the mass M of the second particle and the

spring constant k of the harmonic coupling. Rather than these two parameters, Feyn-

man introduces the parameters v and w related to M and k by

w = v and v = Vk(l + l/M) (12-1)

In terms of these parameters, an upper bound to the energy is given by

3 2 av 0e -t d
EF(v, w) = 3(v - w) J oe dt (units of ?iw) (12-2)

w4v z 2
wt+ v- ( e-Vt)

which is to be minimized with respect to v and w. For the best choice of v and w an

estimate of the etfective polaron mass for very slow polarons is given by

mav e dt (12-3)

V'o /2 t +2 W e vt

v

Feynman obtains the latter expression by making what amounts to a kind of first order

correction to the total mass of the approximating two particle system, mT = M + I =

v/w 2 . Feynman also has given approximate expansions for v, w, EF, and mF in the

weak and strong coupling limits. Because of the conflicting estimates(2) of the polaron

mass in the coupling range a = 5 - 7, it was felt advisable to carry out the minimiza-

tion of (12-1) and the determination of the mass to zero order, mT , and to first order,

mF, comparing these with each other and with masses calculated by other methods.

The repeated evaluation of (12-1) for many values of the pair (v, w) was per-

formed by the Whirlwind computer. Any program for the evaluation of these integrals

had to contend with the singular behavior of the denominator for t - 0, the rapidly

changing factor e vt in the denominator, and the infinite range of integration. The

program finally developed treated the range in two parts, from zero to t and from
02

t to cc, where t o = 7. 5/v. In the first region the variable transformation y = t/t 0
removes the singularity at the origin, includes all the range of troublesome behavior

of e-vt in a way independent of v, and allows accurate integration with 16-point Gauss-

Legendre quadratures. (3) In the second region the variable transformation y = t - t

allows accurate integration with 15-point Gauss-Leguerre quadratures. (4) Since the
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energy is very insensitive to the choice of v and w, six-place accuracy in computing

(12-i) was required. This was achieved in a computer code written by Miss Hannah

Paul requiring between one and two seconds per integral. Subsequent minimization of

E(v, w) was carried out graphically by Miss Paul.

In Table IZ-1 we have listed the values of v, w, EF. mT, and m F found for

various values of a. For comparison we have also listed the energy (ELLP = - a) and

mass (m I 1 + a/6) found by Lee, Low and Pines and Gurari, 5) the mass(ma - + al2LLP (Ha= 1-aL2
found by Haga 6 ) based on the LLP procedure, the energy we have computed using

Gross's transformation superposed on the LLP shift function, (7) and the energy (E T

- . 1088a 2 - 3/2) and mass (mPBT = 232(a/10) 4 ) obtained by Pekar, (8) BogolyubovR

and Tyablikov. (10) It should be noted that the Pekar energy expression is not derived

from a variational calculation so that it may be lower than the true energy. It is true

that Tyablikov ( 1 1 ) and H'hler have derived this expression variationally but only in the

limit of very large coupling.

What is immediately noticed is that the Feynman energy is significantly lower

(hence better) in the coupling region of interest than the energy from any other theory

and that the Feynman masses MT and MF differ considerable from both the LLP and

PTB values in this range of a. Furthermore, the behavior of Haga's expression for

a -* 12 is again seen to be objectionable.

In addition to the fact, shown by Feynman, that m F has essentially the right
F

behavior in both the weak and strong coupling limits, we now have the encouraging

information that mF makes only a small correction to the simpler mT at all coupling

strengths. Thus, a theory of mobility, for example, which contains implicitly the

approximation of mT for the polaron mass should not be so much in error. Theories

using mLLP or mPBT may be considerably in error if only because of an incorrect

description of the slow polaron.
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13. ON THE MOBILITY OF THE POLARON

The simplest property of the polaron which one has attempted to observe ex-

perimentally is not the self energy or effective mass of a slow polaron but the polaron

mobility. Attempts have been made to calculate the electron mobility in polar crystals

including some treatment of self energy and mass corrections by Fr~hlich, Pelzer and

Zienau, fl) Low and Pines, (2) Morita et al., (3) Pekar(4) and the author. (5) Character-

istic of these approaches has been the attempt to base the mobility calculation on

standard transport theory applied to a more subtle description of the polaron than

calling it a bare electron. More direct attempts to calculate the mobility without a

detailed calculation of free polaron properties or a specific reliance on the Boltzmann

equation have been made by Lax(6) and Feynman, (7) although these have not yet pro-

vided results comparable to the earlier works. Of these more complete analysez,

only that of Morita et al. does not rest on one particular description of the polaron,

and those of FPZ, LP, and Pekar depend on descriptions which seem inferior to the Feyn-

man approach (see preceding Report). It has therefore been our aim to apply the Feynman

description of the polaron to the mobility problem. An approximate application of

this technique has been achieved and will be described in detail in the author's doc-

toral dissertation and eventually in the literature. We shall restrict ourselves here j
to summarizing a few salient features.

(1) The phonon-polaron scattering problem is best considered as a resonance

scattering problem for two reasons. First, it avoids the necessity for a description of

the motion of a "fast" polaron, i. e. one which has absorbed a phonon and so can emit

one spontaneously. Such a polaron is not even approximately in a stationary state in

most cases, and cannot be described in the same way as a polaron with small but non-

zero momentum. Second, it avoids the difficulties discussed by Howarth and Sond-

heimer ( 8 ) in solving the Boltzmann equation when the simple scattering process pro-

duces a significant change in the particle energy.

(2) It may well be that the resonance scattering can be considered as that of

a field quantum by a quasi-particle, but even if this is so one must know not only the

energy-momentum relation for the particle near zero momentum, but also the reson-

ance momentum and velocity (calculated from knowing the energy-momentum relation

well away from zero momentum) and the width of the intermediate (resonance) state.

In this respect the assumptions of FPZ and of Pekar prove unacceptable.

(3) There is evidence from LP's work that the resonance scattering cannot

be considered simply as that of a field quantum by a quasi-particle as manifested in
* 3 * 3/the (m/m ) rather than (m/m*)3 /2 dependence of mobility on polaron mass found in

their paper. The analysis of Morita et al. however suggests to the contrary.

(4) The simple replacement, described in a previous Report, (5) of the exact

effective action for the electron propagation by the approximate action introduced by

Feynman is unsatisfactory in one important respect. Since the effective action describes
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the motion of one particle in a two-particle system having only bound states, it is in-

capable of giving a finite width to the polaron state after absorption of a phonon. Since

this width is crucial in obtaining a finite resonance scattering probability, the results

previously reported are, as they stand, meaningless. Furthermore, any finite order

correction to the use of the simple approximate action obtained by summing over a

finite number of Feynman diagrams with virtual phonons representing the difference

between the approximate and exact effective actions cannot give a finite width to this

intermediate state just as no finite order of perturbation theory could give the Weisskopf

resonance fluorescence formula in light scattering by atoms.

(5) A special but infinite set of Feynman diagrams can be summed over in this

case with good approximation and a width is obtained. These calculations are best per-

formed by proving the equivalence of the Feynman formulation of the polaron problem

with an extended Hamiltonian formulation and then doing the sums in the Hamiltonian

formulation. One finds that the picture of resonance scattering as that of a field quan-

tum by a quasi-particle is valid, at least to this approximation, contrary to the results

of Low and Pines, and in agreement with Morita et al. That is, the mobility depends
* 3/2

on the polaron mass as (m/i ) . One also finds that if similar corrections are

calculated for the slow motion of a free polaron, the effective mass is changed by only

a few percent from mT or mF discussed in the previous Report.
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